Solving differential matrix Riccati equations by a piecewise-linearized method based on diagonal Padé approximants
نویسندگان
چکیده
Differential Matrix Riccati Equations (DMREs) appear in several branches of science such as applied Physics and Engineering. For example, these equations play a fundamental role in Control Theory, optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper a new method based on a theorem proved in this paper is described for solving DMREs by a piecewise-linearized approach. This method is applied for developing two block-oriented algorithms based on Diagonal Padé Approximants. MATLAB versions of the above algorithms are developed, comparing, under equal conditions, accuracy and computational costs with other piecewise-linearized algorithms implemented by the authors. Experimental results show the advantages of solving stiff or non-stiff DMREs by the implemented algorithms.
منابع مشابه
A piecewise-linearized algorithm based on the Krylov subspace for solving stiff ODEs
Numerical methods for solving Ordinary Differential Equations (ODEs) have received considerable attention in recent years. In this paper a piecewise-linearized algorithm based on Krylov subspaces for solving Initial Value Problems (IVPs) is proposed. MATLAB versions for autonomous and non-autonomous ODEs of this algorithm have been implemented. These implementations have been compared with othe...
متن کاملComparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملA Piecewise Approximate Method for Solving Second Order Fuzzy Differential Equations Under Generalized Differentiability
In this paper a numerical method for solving second order fuzzy differential equations under generalized differentiability is proposed. This method is based on the interpolating a solution by piecewise polynomial of degree 4 in the range of solution. Moreover we investigate the existence, uniqueness and convergence of approximate solutions. Finally the accuracy of piecewise approximate method b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 182 شماره
صفحات -
تاریخ انتشار 2011